Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Decouple Learning for Parameterized Image Operators (1807.08186v2)

Published 21 Jul 2018 in cs.CV

Abstract: Many different deep networks have been used to approximate, accelerate or improve traditional image operators, such as image smoothing, super-resolution and denoising. Among these traditional operators, many contain parameters which need to be tweaked to obtain the satisfactory results, which we refer to as "parameterized image operators". However, most existing deep networks trained for these operators are only designed for one specific parameter configuration, which does not meet the needs of real scenarios that usually require flexible parameters settings. To overcome this limitation, we propose a new decouple learning algorithm to learn from the operator parameters to dynamically adjust the weights of a deep network for image operators, denoted as the base network. The learned algorithm is formed as another network, namely the weight learning network, which can be end-to-end jointly trained with the base network. Experiments demonstrate that the proposed framework can be successfully applied to many traditional parameterized image operators. We provide more analysis to better understand the proposed framework, which may inspire more promising research in this direction. Our codes and models have been released in https://github.com/fqnchina/DecoupleLearning

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.