Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linear density-based clustering with a discrete density model (1807.08158v1)

Published 21 Jul 2018 in cs.LG and stat.ML

Abstract: Density-based clustering techniques are used in a wide range of data mining applications. One of their most attractive features con- sists in not making use of prior knowledge of the number of clusters that a dataset contains along with their shape. In this paper we propose a new algorithm named Linear DBSCAN (Lin-DBSCAN), a simple approach to clustering inspired by the density model introduced with the well known algorithm DBSCAN. Designed to minimize the computational cost of density based clustering on geospatial data, Lin-DBSCAN features a linear time complexity that makes it suitable for real-time applications on low-resource devices. Lin-DBSCAN uses a discrete version of the density model of DBSCAN that takes ad- vantage of a grid-based scan and merge approach. The name of the algorithm stems exactly from its main features outlined above. The algorithm was tested with well known data sets. Experimental results prove the efficiency and the validity of this approach over DBSCAN in the context of spatial data clustering, enabling the use of a density-based clustering technique on large datasets with low computational cost.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.