Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Partial relaxation of C^0 vertex continuity of stresses of conforming mixed finite elements for the elasticity problem (1807.08090v2)

Published 21 Jul 2018 in math.NA and cs.NA

Abstract: A conforming triangular mixed element recently proposed by Hu and Zhang for linear elasticity is extended by rearranging the global degrees of freedom. More precisely, adaptive meshes $\mathcal{T}1$, $\cdots$, $\mathcal{T}_N$ which are successively refined from an initial mesh $\mathcal{T}_0$ through a newest vertex bisection strategy, admit a crucial hierarchical structure, namely, a newly added vertex $\boldsymbol{x}$ of the mesh $\mathcal{T}\ell$ is the midpoint of an edge $e$ of the coarse mesh $\mathcal{T}{\ell-1}$. Such a hierarchical structure is explored to partially relax the $C0$ vertex continuity of symmetric matrix-valued functions in the discrete stress space of the original element on $\mathcal{T}\ell$ and results in an extended discrete stress space. A feature of this extended discrete stress space is its nestedness in the sense that a space on a coarse mesh $\mathcal{T}$ is a subspace of a space on any refinement $\hat{\mathcal{T}}$ of $\mathcal{T}$, which allows a proof of convergence of a standard adaptive algorithm. The idea is extended to impose a general traction boundary condition on the discrete level. Numerical experiments are provided to illustrate performance on both uniform and adaptive meshes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)