Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Combining Named Entities with WordNet and Using Query-Oriented Spreading Activation for Semantic Text Search (1807.07967v1)

Published 20 Jul 2018 in cs.IR

Abstract: Purely keyword-based text search is not satisfactory because named entities and WordNet words are also important elements to define the content of a document or a query in which they occur. Named entities have ontological features, namely, their aliases, classes, and identifiers. Words in WordNet also have ontological features, namely, their synonyms, hypernyms, hyponyms, and senses. Those features of concepts may be hidden from their textual appearance. Besides, there are related concepts that do not appear in a query, but can bring out the meaning of the query if they are added. We propose an ontology-based generalized Vector Space Model to semantic text search. It exploits ontological features of named entities and WordNet words, and develops a query-oriented spreading activation algorithm to expand queries. In addition, it combines and utilizes advantages of different ontologies for semantic annotation and searching. Experiments on a benchmark dataset show that, in terms of the MAP measure, our model is 42.5% better than the purely keyword-based model, and 32.3% and 15.9% respectively better than the ones using only WordNet or named entities. Keywords: semantic search, spreading activation, ontology, named entity, WordNet.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.