Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Combinations of Ontological Features and Keywords for Text Retrieval (1807.07966v1)

Published 20 Jul 2018 in cs.IR

Abstract: Named entities have been considered and combined with keywords to enhance information retrieval performance. However, there is not yet a formal and complete model that takes into account entity names, classes, and identifiers together. Our work explores various adaptations of the traditional Vector Space Model that combine different ontological features with keywords, and in different ways. It shows better performance of the proposed models as compared to the keyword-based Lucene, and their advantages for both text retrieval and representation of documents and queries.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.