Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimize Deep Convolutional Neural Network with Ternarized Weights and High Accuracy (1807.07948v1)

Published 20 Jul 2018 in cs.CV

Abstract: Deep convolution neural network has achieved great success in many artificial intelligence applications. However, its enormous model size and massive computation cost have become the main obstacle for deployment of such powerful algorithm in the low power and resource-limited embedded systems. As the countermeasure to this problem, in this work, we propose statistical weight scaling and residual expansion methods to reduce the bit-width of the whole network weight parameters to ternary values (i.e. -1, 0, +1), with the objectives to greatly reduce model size, computation cost and accuracy degradation caused by the model compression. With about 16x model compression rate, our ternarized ResNet-32/44/56 could outperform full-precision counterparts by 0.12%, 0.24% and 0.18% on CIFAR- 10 dataset. We also test our ternarization method with AlexNet and ResNet-18 on ImageNet dataset, which both achieve the best top-1 accuracy compared to recent similar works, with the same 16x compression rate. If further incorporating our residual expansion method, compared to the full-precision counterpart, our ternarized ResNet-18 even improves the top-5 accuracy by 0.61% and merely degrades the top-1 accuracy only by 0.42% for the ImageNet dataset, with 8x model compression rate. It outperforms the recent ABC-Net by 1.03% in top-1 accuracy and 1.78% in top-5 accuracy, with around 1.25x higher compression rate and more than 6x computation reduction due to the weight sparsity.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.