Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Generalized Vector Space Model for Ontology-Based Information Retrieval (1807.07779v1)

Published 20 Jul 2018 in cs.IR, cs.CL, and cs.DB

Abstract: Named entities (NE) are objects that are referred to by names such as people, organizations and locations. Named entities and keywords are important to the meaning of a document. We propose a generalized vector space model that combines named entities and keywords. In the model, we take into account different ontological features of named entities, namely, aliases, classes and identifiers. Moreover, we use entity classes to represent the latent information of interrogative words in Wh-queries, which are ignored in traditional keyword-based searching. We have implemented and tested the proposed model on a TREC dataset, as presented and discussed in the paper.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)