Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semantic Document Clustering on Named Entity Features (1807.07777v1)

Published 20 Jul 2018 in cs.IR

Abstract: Keyword-based information processing has limitations due to simple treatment of words. In this paper, we introduce named entities as objectives into document clustering, which are the key elements defining document semantics and in many cases are of user concerns. First, the traditional keyword-based vector space model is adapted with vectors defined over spaces of entity names, types, name-type pairs, and identifiers, instead of keywords. Then, hierarchical document clustering can be performed using the similarity measure defined as the cosines of the vectors representing documents. Experimental results are presented and discussed. Clustering documents by information of named entities could be useful for managing web-based learning materials with respect to related objects.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.