Emergent Mind

Abstract

We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank $r$. Our main result is a deterministic algorithm to generate a matching which is an $O(r)$-approximation to the maximum weight matching, running in $\tilde O(r \log \Delta + \log2 \Delta + \log* n)$ rounds. (Here, the $\tilde O()$ notations hides $\text{polyloglog } \Delta$ and $\text{polylog } r$ factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a $(1+\epsilon)$ approximation algorithm using $\tilde O(\log \Delta / \epsilon3 + \text{polylog}(1/\epsilon, \log \log n))$ randomized time and $\tilde O(\log2 \Delta / \epsilon4 + \log*n / \epsilon)$ deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for $(2 \Delta - 1)$-edge-list coloring in $\tilde O(\log2 \Delta \log n)$ rounds deterministically or $\tilde O( (\log \log n)3 )$ rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most $\lceil (1+\epsilon) \lambda \rceil$ for a graph of arboricity $\lambda$; for fixed $\epsilon$ this runs in $\tilde O(\log6 n)$ rounds deterministically or $\tilde O(\log3 n )$ rounds randomly.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.