Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The colored longest common prefix array computed via sequential scans (1807.07596v1)

Published 19 Jul 2018 in cs.DS

Abstract: Due to the increased availability of large datasets of biological sequences, the tools for sequence comparison are now relying on efficient alignment-free approaches to a greater extent. Most of the alignment-free approaches require the computation of statistics of the sequences in the dataset. Such computations become impractical in internal memory when very large collections of long sequences are considered. In this paper, we present a new conceptual data structure, the colored longest common prefix array (cLCP), that allows to efficiently tackle several problems with an alignment-free approach. In fact, we show that such a data structure can be computed via sequential scans in semi-external memory. By using cLCP, we propose an efficient lightweight strategy to solve the multi-string Average Common Substring (ACS) problem, that consists in the pairwise comparison of a single string against a collection of $m$ strings simultaneously, in order to obtain $m$ ACS induced distances. Experimental results confirm the effectiveness of our approach.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.