Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compositional GAN: Learning Image-Conditional Binary Composition (1807.07560v3)

Published 19 Jul 2018 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: Generative Adversarial Networks (GANs) can produce images of remarkable complexity and realism but are generally structured to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose a novel self-consistent Composition-by-Decomposition (CoDe) network to compose a pair of objects. Given object images from two distinct distributions, our model can generate a realistic composite image from their joint distribution following the texture and shape of the input objects. We evaluate our approach through qualitative experiments and user evaluations. Our results indicate that the learned model captures potential interactions between the two object domains, and generates realistic composed scenes at test time.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.