Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hybrid Scene Compression for Visual Localization (1807.07512v2)

Published 19 Jul 2018 in cs.CV

Abstract: Localizing an image wrt. a 3D scene model represents a core task for many computer vision applications. An increasing number of real-world applications of visual localization on mobile devices, e.g., Augmented Reality or autonomous robots such as drones or self-driving cars, demand localization approaches to minimize storage and bandwidth requirements. Compressing the 3D models used for localization thus becomes a practical necessity. In this work, we introduce a new hybrid compression algorithm that uses a given memory limit in a more effective way. Rather than treating all 3D points equally, it represents a small set of points with full appearance information and an additional, larger set of points with compressed information. This enables our approach to obtain a more complete scene representation without increasing the memory requirements, leading to a superior performance compared to previous compression schemes. As part of our contribution, we show how to handle ambiguous matches arising from point compression during RANSAC. Besides outperforming previous compression techniques in terms of pose accuracy under the same memory constraints, our compression scheme itself is also more efficient. Furthermore, the localization rates and accuracy obtained with our approach are comparable to state-of-the-art feature-based methods, while using a small fraction of the memory.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.