Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Operator-in-the-Loop Deep Sequential Multi-camera Feature Fusion for Person Re-identification (1807.07295v4)

Published 19 Jul 2018 in cs.CV

Abstract: Given a target image as query, person re-identification systems retrieve a ranked list of candidate matches on a per-camera basis. In deployed systems, a human operator scans these lists and labels sighted targets by touch or mouse-based selection. However, classical re-id approaches generate per-camera lists independently. Therefore, target identifications by operator in a subset of cameras cannot be utilized to improve ranking of the target in remaining set of network cameras. To address this shortcoming, we propose a novel sequential multi-camera re-id approach. The proposed approach can accommodate human operator inputs and provides early gains via a monotonic improvement in target ranking. At the heart of our approach is a fusion function which operates on deep feature representations of query and candidate matches. We formulate an optimization procedure custom-designed to incrementally improve query representation. Since existing evaluation methods cannot be directly adopted to our setting, we also propose two novel evaluation protocols. The results on two large-scale re-id datasets (Market-1501, DukeMTMC-reID) demonstrate that our multi-camera method significantly outperforms baselines and other popular feature fusion schemes. Additionally, we conduct a comparative subject-based study of human operator performance. The superior operator performance enabled by our approach makes a compelling case for its integration into deployable video-surveillance systems.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.