Papers
Topics
Authors
Recent
2000 character limit reached

Representational efficiency outweighs action efficiency in human program induction (1807.07134v1)

Published 18 Jul 2018 in cs.AI

Abstract: The importance of hierarchically structured representations for tractable planning has long been acknowledged. However, the questions of how people discover such abstractions and how to define a set of optimal abstractions remain open. This problem has been explored in cognitive science in the problem solving literature and in computer science in hierarchical reinforcement learning. Here, we emphasize an algorithmic perspective on learning hierarchical representations in which the objective is to efficiently encode the structure of the problem, or, equivalently, to learn an algorithm with minimal length. We introduce a novel problem-solving paradigm that links problem solving and program induction under the Markov Decision Process (MDP) framework. Using this task, we target the question of whether humans discover hierarchical solutions by maximizing efficiency in number of actions they generate or by minimizing the complexity of the resulting representation and find evidence for the primacy of representational efficiency.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.