Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Newton-ADMM: A Distributed GPU-Accelerated Optimizer for Multiclass Classification Problems (1807.07132v3)

Published 18 Jul 2018 in cs.LG and stat.ML

Abstract: First-order optimization methods, such as stochastic gradient descent (SGD) and its variants, are widely used in machine learning applications due to their simplicity and low per-iteration costs. However, they often require larger numbers of iterations, with associated communication costs in distributed environments. In contrast, Newton-type methods, while having higher per-iteration costs, typically require a significantly smaller number of iterations, which directly translates to reduced communication costs. In this paper, we present a novel distributed optimizer for classification problems, which integrates a GPU-accelerated Newton-type solver with the global consensus formulation of Alternating Direction of Method Multipliers (ADMM). By leveraging the communication efficiency of ADMM, GPU-accelerated inexact-Newton solver, and an effective spectral penalty parameter selection strategy, we show that our proposed method (i) yields better generalization performance on several classification problems; (ii) significantly outperforms state-of-the-art methods in distributed time to solution; and (iii) offers better scaling on large distributed platforms.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube