Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bridging the Accuracy Gap for 2-bit Quantized Neural Networks (QNN) (1807.06964v1)

Published 17 Jul 2018 in cs.CV

Abstract: Deep learning algorithms achieve high classification accuracy at the expense of significant computation cost. In order to reduce this cost, several quantization schemes have gained attention recently with some focusing on weight quantization, and others focusing on quantizing activations. This paper proposes novel techniques that target weight and activation quantizations separately resulting in an overall quantized neural network (QNN). The activation quantization technique, PArameterized Clipping acTivation (PACT), uses an activation clipping parameter $\alpha$ that is optimized during training to find the right quantization scale. The weight quantization scheme, statistics-aware weight binning (SAWB), finds the optimal scaling factor that minimizes the quantization error based on the statistical characteristics of the distribution of weights without the need for an exhaustive search. The combination of PACT and SAWB results in a 2-bit QNN that achieves state-of-the-art classification accuracy (comparable to full precision networks) across a range of popular models and datasets.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube