Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Integrating Algorithmic Planning and Deep Learning for Partially Observable Navigation (1807.06696v1)

Published 17 Jul 2018 in cs.RO, cs.AI, and cs.LG

Abstract: We propose to take a novel approach to robot system design where each building block of a larger system is represented as a differentiable program, i.e. a deep neural network. This representation allows for integrating algorithmic planning and deep learning in a principled manner, and thus combine the benefits of model-free and model-based methods. We apply the proposed approach to a challenging partially observable robot navigation task. The robot must navigate to a goal in a previously unseen 3-D environment without knowing its initial location, and instead relying on a 2-D floor map and visual observations from an onboard camera. We introduce the Navigation Networks (NavNets) that encode state estimation, planning and acting in a single, end-to-end trainable recurrent neural network. In preliminary simulation experiments we successfully trained navigation networks to solve the challenging partially observable navigation task.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.