Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Deep Learning on Multi-Source Private Data (1807.06689v1)

Published 17 Jul 2018 in cs.LG and stat.ML

Abstract: Machine learning models benefit from large and diverse datasets. Using such datasets, however, often requires trusting a centralized data aggregator. For sensitive applications like healthcare and finance this is undesirable as it could compromise patient privacy or divulge trade secrets. Recent advances in secure and privacy-preserving computation, including trusted hardware enclaves and differential privacy, offer a way for mutually distrusting parties to efficiently train a machine learning model without revealing the training data. In this work, we introduce Myelin, a deep learning framework which combines these privacy-preservation primitives, and use it to establish a baseline level of performance for fully private machine learning.

Citations (99)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.