The Online $k$-Taxi Problem (1807.06645v2)
Abstract: We consider the online $k$-taxi problem, a generalization of the $k$-server problem, in which $k$ taxis serve a sequence of requests in a metric space. A request consists of two points $s$ and $t$, representing a passenger that wants to be carried by a taxi from $s$ to $t$. The goal is to serve all requests while minimizing the total distance traveled by all taxis. The problem comes in two flavors, called the easy and the hard $k$-taxi problem: In the easy $k$-taxi problem, the cost is defined as the total distance traveled by the taxis; in the hard $k$-taxi problem, the cost is only the distance of empty runs. The hard $k$-taxi problem is substantially more difficult than the easy version with at least an exponential deterministic competitive ratio, $\Omega(2k)$, admitting a reduction from the layered graph traversal problem. In contrast, the easy $k$-taxi problem has exactly the same competitive ratio as the $k$-server problem. We focus mainly on the hard version. For hierarchically separated trees (HSTs), we present a memoryless randomized algorithm with competitive ratio $2k-1$ against adaptive online adversaries and provide two matching lower bounds: for arbitrary algorithms against adaptive adversaries and for memoryless algorithms against oblivious adversaries. Due to well-known HST embedding techniques, the algorithm implies a randomized $O(2k\log n)$-competitive algorithm for arbitrary $n$-point metrics. This is the first competitive algorithm for the hard $k$-taxi problem for general finite metric spaces and general $k$. For the special case of $k=2$, we obtain a precise answer of $9$ for the competitive ratio in general metrics. With an algorithm based on growing, shrinking and shifting regions, we show that one can achieve a constant competitive ratio also for the hard $3$-taxi problem on the line (abstracting the scheduling of three elevators).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.