Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Single-phase Single-stage Detection of Pulmonary Nodules in Chest CT Imaging (1807.05972v1)

Published 16 Jul 2018 in cs.CV

Abstract: Detection of pulmonary nodules in chest CT imaging plays a crucial role in early diagnosis of lung cancer. Manual examination is highly time-consuming and error prone, calling for computer-aided detection, both to improve efficiency and reduce misdiagnosis. Over the years, a range of systems have been proposed, mostly following a two-phase paradigm with: 1) candidate detection, 2) false positive reduction. Recently, deep learning has become a dominant force in algorithm development. As for candidate detection, prior art was mainly based on the two-stage Faster R-CNN framework, which starts with an initial sub-net to generate a set of class-agnostic region proposals, followed by a second sub-net to perform classification and bounding-box regression. In contrast, we abandon the conventional two-phase paradigm and two-stage framework altogether and propose to train a single network for end-to-end nodule detection instead, without transfer learning or further post-processing. Our feature learning model is a modification of the ResNet and feature pyramid network combined, powered by RReLU activation. The major challenge is the condition of extreme inter-class and intra-class sample imbalance, where the positives are overwhelmed by a large negative pool, which is mostly composed of easy and a handful of hard negatives. Direct training on all samples can seriously undermine training efficacy. We propose a patch-based sampling strategy over a set of regularly updating anchors, which narrows sampling scope to all positives and only hard negatives, effectively addressing this issue. As a result, our approach substantially outperforms prior art in terms of both accuracy and speed. Finally, the prevailing FROC evaluation over [1/8, 1/4, 1/2, 1, 2, 4, 8] false positives per scan, is far from ideal in real clinical environments. We suggest FROC over [1, 2, 4] false positives as a better metric.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)