Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Distributed Collaborative Filtering Algorithm Using Multiple Data Sources (1807.05853v1)

Published 16 Jul 2018 in cs.IR and cs.AI

Abstract: Collaborative Filtering (CF) is one of the most commonly used recommendation methods. CF consists in predicting whether, or how much, a user will like (or dislike) an item by leveraging the knowledge of the user's preferences as well as that of other users. In practice, users interact and express their opinion on only a small subset of items, which makes the corresponding user-item rating matrix very sparse. Such data sparsity yields two main problems for recommender systems: (1) the lack of data to effectively model users' preferences, and (2) the lack of data to effectively model item characteristics. However, there are often many other data sources that are available to a recommender system provider, which can describe user interests and item characteristics (e.g., users' social network, tags associated to items, etc.). These valuable data sources may supply useful information to enhance a recommendation system in modeling users' preferences and item characteristics more accurately and thus, hopefully, to make recommenders more precise. For various reasons, these data sources may be managed by clusters of different data centers, thus requiring the development of distributed solutions. In this paper, we propose a new distributed collaborative filtering algorithm, which exploits and combines multiple and diverse data sources to improve recommendation quality. Our experimental evaluation using real datasets shows the effectiveness of our algorithm compared to state-of-the-art recommendation algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.