Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Token Sliding on Split Graphs (1807.05322v2)

Published 14 Jul 2018 in cs.DS

Abstract: We consider the complexity of the Independent Set Reconfiguration problem under the Token Sliding rule. In this problem we are given two independent sets of a graph and are asked if we can transform one to the other by repeatedly exchanging a vertex that is currently in the set with one of its neighbors, while maintaining the set independent. Our main result is to show that this problem is PSPACE-complete on split graphs (and hence also on chordal graphs), thus resolving an open problem in this area. We then go on to consider the $c$-Colorable Reconfiguration problem under the same rule, where the constraint is now to maintain the set $c$-colorable at all times. As one may expect, a simple modification of our reduction shows that this more general problem is PSPACE-complete for all fixed $c\ge 1$ on chordal graphs. Somewhat surprisingly, we show that the same cannot be said for split graphs: we give a polynomial time ($n{O(c)}$) algorithm for all fixed values of $c$, except $c=1$, for which the problem is PSPACE-complete. We complement our algorithm with a lower bound showing that $c$-Colorable Reconfiguration is W[2]-hard on split graphs parameterized by $c$ and the length of the solution, as well as a tight ETH-based lower bound for both parameters.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.