Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybrid CTC-Attention based End-to-End Speech Recognition using Subword Units (1807.04978v2)

Published 13 Jul 2018 in eess.AS, cs.CL, and cs.SD

Abstract: In this paper, we present an end-to-end automatic speech recognition system, which successfully employs subword units in a hybrid CTC-Attention based system. The subword units are obtained by the byte-pair encoding (BPE) compression algorithm. Compared to using words as modeling units, using characters or subword units does not suffer from the out-of-vocabulary (OOV) problem. Furthermore, using subword units further offers a capability in modeling longer context than using characters. We evaluate different systems over the LibriSpeech 1000h dataset. The subword-based hybrid CTC-Attention system obtains 6.8% word error rate (WER) on the test_clean subset without any dictionary or external LLM. This represents a significant improvement (a 12.8% WER relative reduction) over the character-based hybrid CTC-Attention system.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.