Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A tight Erdős-Pósa function for planar minors (1807.04969v5)

Published 13 Jul 2018 in math.CO and cs.DM

Abstract: Let $H$ be a planar graph. By a classical result of Robertson and Seymour, there is a function $f:\mathbb{N} \to \mathbb{R}$ such that for all $k \in \mathbb{N}$ and all graphs $G$, either $G$ contains $k$ vertex-disjoint subgraphs each containing $H$ as a minor, or there is a subset $X$ of at most $f(k)$ vertices such that $G-X$ has no $H$-minor. We prove that this remains true with $f(k) = c k \log k$ for some constant $c=c(H)$. This bound is best possible, up to the value of $c$, and improves upon a recent result of Chekuri and Chuzhoy [STOC 2013], who established this with $f(k) = c k \logd k$ for some universal constant $d$. The proof is constructive and yields a polynomial-time $O(\log \mathsf{OPT})$-approximation algorithm for packing subgraphs containing an $H$-minor.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.