Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parameterized Distributed Algorithms (1807.04900v2)

Published 13 Jul 2018 in cs.DC and cs.DS

Abstract: In this work, we initiate a thorough study of parameterized graph optimization problems in the distributed setting. In a parameterized problem, an algorithm decides whether a solution of size bounded by a \emph{parameter} $k$ exists and if so, it finds one. We study fundamental problems, including Minimum Vertex Cover (MVC), Maximum Independent Set (MaxIS), Maximum Matching (MaxM), and many others, in both the LOCAL and CONGEST distributed computation models. We present lower bounds for the round complexity of solving parameterized problems in both models, together with optimal and near-optimal upper bounds. Our results extend beyond the scope of parameterized problems. We show that any LOCAL $(1+\epsilon)$-approximation algorithm for the above problems must take $\Omega(\epsilon{-1})$ rounds. Joined with the algorithm of [GKM17] and the $\Omega(\sqrt{\frac{\log n}{\log\log n}})$ lower bound of [KMW16], this settles the complexity of $(1+\epsilon)$-approximating MVC, MaxM and MaxIS at $(\epsilon{-1}\log n){\Theta(1)}$. We also show that our parameterized approach reduces the runtime of exact and approximate CONGEST algorithms for MVC and MaxM if the optimal solution is small, without knowing its size beforehand. Finally, we propose the first deterministic $o(n2)$ rounds CONGEST algorithms that approximate MVC and MaxM within a factor strictly smaller than $2$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.