Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Physical Preprocessing for Example-Based Super-Resolution (1807.04813v1)

Published 12 Jul 2018 in eess.IV

Abstract: In example-based super-resolution, the function relating low-resolution images to their high-resolution counterparts is learned from a given dataset. This data-driven approach to solving the inverse problem of increasing image resolution has been implemented with deep learning algorithms. In this work, we explore modifying the imaging hardware in order to collect more informative low-resolution images for better ultimate high-resolution image reconstruction. We show that this "physical preprocessing" allows for improved image reconstruction with deep learning in Fourier ptychographic microscopy. Fourier ptychographic microscopy is a technique allowing for both high resolution and high field-of-view at the cost of temporal resolution. In Fourier ptychographic microscopy, variable illumination patterns are used to collect multiple low-resolution images. These low-resolution images are then computationally combined to create an image with resolution exceeding that of any single image from the microscope. We use deep learning to jointly optimize the illumination pattern with the post-processing reconstruction algorithm for a given sample type, allowing for single-shot imaging with both high resolution and high field-of-view. We demonstrate, with simulated data, that the joint optimization yields improved image reconstruction as compared with sole optimization of the post-processing reconstruction algorithm.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.