Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Practical Obstacles to Deploying Active Learning (1807.04801v3)

Published 12 Jul 2018 in cs.LG and stat.ML

Abstract: Active learning (AL) is a widely-used training strategy for maximizing predictive performance subject to a fixed annotation budget. In AL one iteratively selects training examples for annotation, often those for which the current model is most uncertain (by some measure). The hope is that active sampling leads to better performance than would be achieved under independent and identically distributed (i.i.d.) random samples. While AL has shown promise in retrospective evaluations, these studies often ignore practical obstacles to its use. In this paper we show that while AL may provide benefits when used with specific models and for particular domains, the benefits of current approaches do not generalize reliably across models and tasks. This is problematic because in practice one does not have the opportunity to explore and compare alternative AL strategies. Moreover, AL couples the training dataset with the model used to guide its acquisition. We find that subsequently training a successor model with an actively-acquired dataset does not consistently outperform training on i.i.d. sampled data. Our findings raise the question of whether the downsides inherent to AL are worth the modest and inconsistent performance gains it tends to afford.

Citations (110)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.