Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Product Codebooks using Vector Quantized Autoencoders for Image Retrieval (1807.04629v4)

Published 12 Jul 2018 in eess.IV, cs.CV, and cs.LG

Abstract: Vector-Quantized Variational Autoencoders (VQ-VAE)[1] provide an unsupervised model for learning discrete representations by combining vector quantization and autoencoders. In this paper, we study the use of VQ-VAE for representation learning for downstream tasks, such as image retrieval. We first describe the VQ-VAE in the context of an information-theoretic framework. We show that the regularization term on the learned representation is determined by the size of the embedded codebook before the training and it affects the generalization ability of the model. As a result, we introduce a hyperparameter to balance the strength of the vector quantizer and the reconstruction error. By tuning the hyperparameter, the embedded bottleneck quantizer is used as a regularizer that forces the output of the encoder to share a constrained coding space such that learned latent features preserve the similarity relations of the data space. In addition, we provide a search range for finding the best hyperparameter. Finally, we incorporate the product quantization into the bottleneck stage of VQ-VAE and propose an end-to-end unsupervised learning model for the image retrieval task. The product quantizer has the advantage of generating large-size codebooks. Fast retrieval can be achieved by using the lookup tables that store the distance between any pair of sub-codewords. State-of-the-art retrieval results are achieved by the learned codebooks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)