Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Modeling Data Lake Metadata with a Data Vault (1807.04035v1)

Published 11 Jul 2018 in cs.DB

Abstract: With the rise of big data, business intelligence had to find solutions for managing even greater data volumes and variety than in data warehouses, which proved ill-adapted. Data lakes answer these needs from a storage point of view, but require managing adequate metadata to guarantee an efficient access to data. Starting from a multidimensional metadata model designed for an industrial heritage data lake presenting a lack of schema evolutivity, we propose in this paper to use ensemble modeling, and more precisely a data vault, to address this issue. To illustrate the feasibility of this approach, we instantiate our metadata conceptual model into relational and document-oriented logical and physical models, respectively. We also compare the physical models in terms of metadata storage and query response time.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.