Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalable Sparse Subspace Clustering via Ordered Weighted $\ell_1$ Regression (1807.03746v1)

Published 10 Jul 2018 in stat.ML and cs.LG

Abstract: The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the $\ell_1$ minimization with a generalization called Ordered Weighted $\ell_1$ (OWL) minimization which performs simultaneous regression and clustering of correlated variables. Using random geometric graph theory, we prove that OWL regression selects more points within each subspace, resulting in better clustering results. This allows for accurate subspace clustering based on regression solutions for only a small subset of the total dataset, significantly reducing the computational complexity compared to SSC. In experiments, we find that our OWL approach can achieve a speedup of 20$\times$ to 30$\times$ for synthetic problems and 4$\times$ to 8$\times$ on real data problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.