Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Combined CNN and LSTM Model for Arabic Sentiment Analysis (1807.02911v3)

Published 9 Jul 2018 in cs.CL

Abstract: Deep neural networks have shown good data modelling capabilities when dealing with challenging and large datasets from a wide range of application areas. Convolutional Neural Networks (CNNs) offer advantages in selecting good features and Long Short-Term Memory (LSTM) networks have proven good abilities of learning sequential data. Both approaches have been reported to provide improved results in areas such image processing, voice recognition, language translation and other NLP tasks. Sentiment classification for short text messages from Twitter is a challenging task, and the complexity increases for Arabic language sentiment classification tasks because Arabic is a rich language in morphology. In addition, the availability of accurate pre-processing tools for Arabic is another current limitation, along with limited research available in this area. In this paper, we investigate the benefits of integrating CNNs and LSTMs and report obtained improved accuracy for Arabic sentiment analysis on different datasets. Additionally, we seek to consider the morphological diversity of particular Arabic words by using different sentiment classification levels.

Citations (141)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube