Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Deep Learning through Automatic Programming (1807.02816v1)

Published 8 Jul 2018 in cs.LG and stat.ML

Abstract: Deep learning and deep architectures are emerging as the best machine learning methods so far in many practical applications such as reducing the dimensionality of data, image classification, speech recognition or object segmentation. In fact, many leading technology companies such as Google, Microsoft or IBM are researching and using deep architectures in their systems to replace other traditional models. Therefore, improving the performance of these models could make a strong impact in the area of machine learning. However, deep learning is a very fast-growing research domain with many core methodologies and paradigms just discovered over the last few years. This thesis will first serve as a short summary of deep learning, which tries to include all of the most important ideas in this research area. Based on this knowledge, we suggested, and conducted some experiments to investigate the possibility of improving the deep learning based on automatic programming (ADATE). Although our experiments did produce good results, there are still many more possibilities that we could not try due to limited time as well as some limitations of the current ADATE version. I hope that this thesis can promote future work on this topic, especially when the next version of ADATE comes out. This thesis also includes a short analysis of the power of ADATE system, which could be useful for other researchers who want to know what it is capable of.

Summary

We haven't generated a summary for this paper yet.