Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Anytime Neural Prediction via Slicing Networks Vertically (1807.02609v1)

Published 7 Jul 2018 in cs.LG and stat.ML

Abstract: The pioneer deep neural networks (DNNs) have emerged to be deeper or wider for improving their accuracy in various applications of artificial intelligence. However, DNNs are often too heavy to deploy in practice, and it is often required to control their architectures dynamically given computing resource budget, i.e., anytime prediction. While most existing approaches have focused on training multiple shallow sub-networks jointly, we study training thin sub-networks instead. To this end, we first build many inclusive thin sub-networks (of the same depth) under a minor modification of existing multi-branch DNNs, and found that they can significantly outperform the state-of-art dense architecture for anytime prediction. This is remarkable due to their simplicity and effectiveness, but training many thin sub-networks jointly faces a new challenge on training complexity. To address the issue, we also propose a novel DNN architecture by forcing a certain sparsity pattern on multi-branch network parameters, making them train efficiently for the purpose of anytime prediction. In our experiments on the ImageNet dataset, its sub-networks have up to $43.3\%$ smaller sizes (FLOPs) compared to those of the state-of-art anytime model with respect to the same accuracy. Finally, we also propose an alternative task under the proposed architecture using a hierarchical taxonomy, which brings a new angle for anytime prediction.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube