Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tone Recognition Using Lifters and CTC (1807.02465v1)

Published 6 Jul 2018 in eess.AS and cs.SD

Abstract: In this paper, we present a new method for recognizing tones in continuous speech for tonal languages. The method works by converting the speech signal to a cepstrogram, extracting a sequence of cepstral features using a convolutional neural network, and predicting the underlying sequence of tones using a connectionist temporal classification (CTC) network. The performance of the proposed method is evaluated on a freely available Mandarin Chinese speech corpus, AISHELL-1, and is shown to outperform the existing techniques in the literature in terms of tone error rate (TER).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.