Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Quality Diversity Through Surprise (1807.02397v4)

Published 6 Jul 2018 in cs.NE

Abstract: Quality diversity is a recent family of evolutionary search algorithms which focus on finding several well-performing (quality) yet different (diversity) solutions with the aim to maintain an appropriate balance between divergence and convergence during search. While quality diversity has already delivered promising results in complex problems, the capacity of divergent search variants for quality diversity remains largely unexplored. Inspired by the notion of surprise as an effective driver of divergent search and its orthogonal nature to novelty this paper investigates the impact of the former to quality diversity performance. For that purpose we introduce three new quality diversity algorithms which employ surprise as a diversity measure, either on its own or combined with novelty, and compare their performance against novelty search with local competition, the state of the art quality diversity algorithm. The algorithms are tested in a robot navigation task across 60 highly deceptive mazes. Our findings suggest that allowing surprise and novelty to operate synergistically for divergence and in combination with local competition leads to quality diversity algorithms of significantly higher efficiency, speed and robustness.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.