Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Back Projection for Sparse-View CT Reconstruction (1807.02370v1)

Published 6 Jul 2018 in eess.IV and cs.CV

Abstract: Filtered back projection (FBP) is a classical method for image reconstruction from sinogram CT data. FBP is computationally efficient but produces lower quality reconstructions than more sophisticated iterative methods, particularly when the number of views is lower than the number required by the Nyquist rate. In this paper, we use a deep convolutional neural network (CNN) to produce high-quality reconstructions directly from sinogram data. A primary novelty of our approach is that we first back project each view separately to form a stack of back projections and then feed this stack as input into the convolutional neural network. These single-view back projections convert the encoding of sinogram data into the appropriate spatial location, which can then be leveraged by the spatial invariance of the CNN to learn the reconstruction effectively. We demonstrate the benefit of our CNN based back projection on simulated sparse-view CT data over classical FBP.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.