Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sliced Recurrent Neural Networks (1807.02291v1)

Published 6 Jul 2018 in cs.CL

Abstract: Recurrent neural networks have achieved great success in many NLP tasks. However, they have difficulty in parallelization because of the recurrent structure, so it takes much time to train RNNs. In this paper, we introduce sliced recurrent neural networks (SRNNs), which could be parallelized by slicing the sequences into many subsequences. SRNNs have the ability to obtain high-level information through multiple layers with few extra parameters. We prove that the standard RNN is a special case of the SRNN when we use linear activation functions. Without changing the recurrent units, SRNNs are 136 times as fast as standard RNNs and could be even faster when we train longer sequences. Experiments on six largescale sentiment analysis datasets show that SRNNs achieve better performance than standard RNNs.

Citations (40)

Summary

We haven't generated a summary for this paper yet.