Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Feature Assisted bi-directional LSTM Model for Protein-Protein Interaction Identification from Biomedical Texts (1807.02162v1)

Published 5 Jul 2018 in cs.IR and cs.CL

Abstract: Knowledge about protein-protein interactions is essential in understanding the biological processes such as metabolic pathways, DNA replication, and transcription etc. However, a majority of the existing Protein-Protein Interaction (PPI) systems are dependent primarily on the scientific literature, which is yet not accessible as a structured database. Thus, efficient information extraction systems are required for identifying PPI information from the large collection of biomedical texts. Most of the existing systems model the PPI extraction task as a classification problem and are tailored to the handcrafted feature set including domain dependent features. In this paper, we present a novel method based on deep bidirectional long short-term memory (B-LSTM) technique that exploits word sequences and dependency path related information to identify PPI information from text. This model leverages joint modeling of proteins and relations in a single unified framework, which we name as Shortest Dependency Path B-LSTM (sdpLSTM) model. We perform experiments on two popular benchmark PPI datasets, namely AiMed & BioInfer. The evaluation shows the F1-score values of 86.45% and 77.35% on AiMed and BioInfer, respectively. Comparisons with the existing systems show that our proposed approach attains state-of-the-art performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.