Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-Task Trust Transfer for Human-Robot Interaction (1807.01866v3)

Published 5 Jul 2018 in cs.RO and cs.HC

Abstract: Trust is essential in shaping human interactions with one another and with robots. This paper discusses how human trust in robot capabilities transfers across multiple tasks. We first present a human-subject study of two distinct task domains: a Fetch robot performing household tasks and a virtual reality simulation of an autonomous vehicle performing driving and parking maneuvers. The findings expand our understanding of trust and inspire new differentiable models of trust evolution and transfer via latent task representations: (i) a rational Bayes model, (ii) a data-driven neural network model, and (iii) a hybrid model that combines the two. Experiments show that the proposed models outperform prevailing models when predicting trust over unseen tasks and users. These results suggest that (i) task-dependent functional trust models capture human trust in robot capabilities more accurately, and (ii) trust transfer across tasks can be inferred to a good degree. The latter enables trust-mediated robot decision-making for fluent human-robot interaction in multi-task settings.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.