Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Anomaly Detection for Skin Disease Images Using Variational Autoencoder (1807.01349v2)

Published 3 Jul 2018 in cs.LG and stat.ML

Abstract: In this paper, we demonstrate the potential of applying Variational Autoencoder (VAE) [10] for anomaly detection in skin disease images. VAE is a class of deep generative models which is trained by maximizing the evidence lower bound of data distribution [10]. When trained on only normal data, the resulting model is able to perform efficient inference and to determine if a test image is normal or not. We perform experiments on ISIC2018 Challenge Disease Classification dataset (Task 3) and compare different methods to use VAE to detect anomaly. The model is able to detect all diseases with 0.779 AUCROC. If we focus on specific diseases, the model is able to detect melanoma with 0.864 AUCROC and detect actinic keratosis with 0.872 AUCROC, even if it only sees the images of nevus. To the best of our knowledge, this is the first applied work of deep generative models for anomaly detection in dermatology.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)