Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations (1807.01212v3)

Published 3 Jul 2018 in math.PR, cs.NA, math.AP, and math.NA

Abstract: For a long time it is well-known that high-dimensional linear parabolic partial differential equations (PDEs) can be approximated by Monte Carlo methods with a computational effort which grows polynomially both in the dimension and in the reciprocal of the prescribed accuracy. In other words, linear PDEs do not suffer from the curse of dimensionality. For general semilinear PDEs with Lipschitz coefficients, however, it remained an open question whether these suffer from the curse of dimensionality. In this paper we partially solve this open problem. More precisely, we prove in the case of semilinear heat equations with gradient-independent and globally Lipschitz continuous nonlinearities that the computational effort of a variant of the recently introduced multilevel Picard approximations grows polynomially both in the dimension and in the reciprocal of the required accuracy.

Citations (121)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.