Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Decoupled Data Based Approach to Stochastic Optimal Control Problems (1807.01164v2)

Published 1 Jul 2018 in cs.SY and math.OC

Abstract: This paper studies the stochastic optimal control problem for systems with unknown dynamics. A novel decoupled data based control (D2C) approach is proposed, which solves the problem in a decoupled "open loop-closed loop" fashion that is shown to be near-optimal. First, an open-loop deterministic trajectory optimization problem is solved using a black-box simulation model of the dynamical system using a standard nonlinear programming (NLP) solver. Then a Linear Quadratic Regulator (LQR) controller is designed for the nominal trajectory-dependent linearized system which is learned using input-output experimental data. Computational examples are used to illustrate the performance of the proposed approach with three benchmark problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.