Papers
Topics
Authors
Recent
2000 character limit reached

Coevolving nonlinear voter model with triadic closure (1807.01089v1)

Published 3 Jul 2018 in physics.soc-ph and cs.SI

Abstract: We study a nonlinear coevolving voter model with triadic closure local rewiring. We find three phases with different topological properties and configuration in the steady state: absorbing consensus phase with a single component, absorbing fragmented phase with two components in opposite consensus states, and a dynamically active shattered phase with many isolated nodes. This shattered phase, which does not exist for a coevolving model with global rewiring, has a lifetime that scale exponentially with system size. We characterize the transitions between these phases in terms of the size of the largest cluster, the number of clusters, and the magnetization. Our analysis provides a possible solution to reproduce isolated parts in adaptive networks and high clustering widely observed in social systems.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.