Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural Random Projections for Language Modelling (1807.00930v4)

Published 2 Jul 2018 in cs.CL and cs.NE

Abstract: Neural network-based LLMs deal with data sparsity problems by mapping the large discrete space of words into a smaller continuous space of real-valued vectors. By learning distributed vector representations for words, each training sample informs the neural network model about a combinatorial number of other patterns. In this paper, we exploit the sparsity in natural language even further by encoding each unique input word using a fixed sparse random representation. These sparse codes are then projected onto a smaller embedding space which allows for the encoding of word occurrences from a possibly unknown vocabulary, along with the creation of more compact LLMs using a reduced number of parameters. We investigate the properties of our encoding mechanism empirically, by evaluating its performance on the widely used Penn Treebank corpus. We show that guaranteeing approximately equidistant (nearly orthogonal) vector representations for unique discrete inputs is enough to provide the neural network model with enough information to learn --and make use-- of distributed representations for these inputs.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.