Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-modal Egocentric Activity Recognition using Audio-Visual Features (1807.00612v3)

Published 2 Jul 2018 in cs.CV

Abstract: Egocentric activity recognition in first-person videos has an increasing importance with a variety of applications such as lifelogging, summarization, assisted-living and activity tracking. Existing methods for this task are based on interpretation of various sensor information using pre-determined weights for each feature. In this work, we propose a new framework for egocentric activity recognition problem based on combining audio-visual features with multi-kernel learning (MKL) and multi-kernel boosting (MKBoost). For that purpose, firstly grid optical-flow, virtual-inertia feature, log-covariance, cuboid are extracted from the video. The audio signal is characterized using a "supervector", obtained based on Gaussian mixture modelling of frame-level features, followed by a maximum a-posteriori adaptation. Then, the extracted multi-modal features are adaptively fused by MKL classifiers in which both the feature and kernel selection/weighing and recognition tasks are performed together. The proposed framework was evaluated on a number of egocentric datasets. The results showed that using multi-modal features with MKL outperforms the existing methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.