Papers
Topics
Authors
Recent
2000 character limit reached

Improved Techniques for Learning to Dehaze and Beyond: A Collective Study (1807.00202v2)

Published 30 Jun 2018 in cs.CV and cs.LG

Abstract: Here we explore two related but important tasks based on the recently released REalistic Single Image DEhazing (RESIDE) benchmark dataset: (i) single image dehazing as a low-level image restoration problem; and (ii) high-level visual understanding (e.g., object detection) of hazy images. For the first task, we investigated a variety of loss functions and show that perception-driven loss significantly improves dehazing performance. In the second task, we provide multiple solutions including using advanced modules in the dehazing-detection cascade and domain-adaptive object detectors. In both tasks, our proposed solutions significantly improve performance. GitHub repository URL is: https://github.com/guanlongzhao/dehaze

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.