Algorithmic Pirogov-Sinai theory (1806.11548v4)
Abstract: We develop an efficient algorithmic approach for approximate counting and sampling in the low-temperature regime of a broad class of statistical physics models on finite subsets of the lattice $\mathbb Zd$ and on the torus $(\mathbb Z/n \mathbb Z)d$. Our approach is based on combining contour representations from Pirogov-Sinai theory with Barvinok's approach to approximate counting using truncated Taylor series. Some consequences of our main results include an FPTAS for approximating the partition function of the hard-core model at sufficiently high fugacity on subsets of $\mathbb Zd$ with appropriate boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts model on the discrete torus $(\mathbb Z/n \mathbb Z)d$ at sufficiently low temperature.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.