Papers
Topics
Authors
Recent
2000 character limit reached

Convergence Problems with Generative Adversarial Networks (GANs) (1806.11382v1)

Published 29 Jun 2018 in cs.LG and stat.ML

Abstract: Generative adversarial networks (GANs) are a novel approach to generative modelling, a task whose goal it is to learn a distribution of real data points. They have often proved difficult to train: GANs are unlike many techniques in machine learning, in that they are best described as a two-player game between a discriminator and generator. This has yielded both unreliability in the training process, and a general lack of understanding as to how GANs converge, and if so, to what. The purpose of this dissertation is to provide an account of the theory of GANs suitable for the mathematician, highlighting both positive and negative results. This involves identifying the problems when training GANs, and how topological and game-theoretic perspectives of GANs have contributed to our understanding and improved our techniques in recent years.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.