Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Collective decision for open set recognition (1806.11258v5)

Published 29 Jun 2018 in cs.LG and stat.ML

Abstract: In open set recognition (OSR), almost all existing methods are designed specially for recognizing individual instances, even these instances are collectively coming in batch. Recognizers in decision either reject or categorize them to some known class using empirically-set threshold. Thus the decision threshold plays a key role. However, the selection for it usually depends on the knowledge of known classes, inevitably incurring risks due to lacking available information from unknown classes. On the other hand, a more realistic OSR system should NOT just rest on a reject decision but should go further, especially for discovering the hidden unknown classes among the reject instances, whereas existing OSR methods do not pay special attention. In this paper, we introduce a novel collective/batch decision strategy with an aim to extend existing OSR for new class discovery while considering correlations among the testing instances. Specifically, a collective decision-based OSR framework (CD-OSR) is proposed by slightly modifying the Hierarchical Dirichlet process (HDP). Thanks to HDP, our CD-OSR does not need to define the decision threshold and can implement the open set recognition and new class discovery simultaneously. Finally, extensive experiments on benchmark datasets indicate the validity of CD-OSR.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.