Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient Deployment and Mission Timing of Autonomous Underwater Vehicles in Large-Scale Operations (1806.11257v2)

Published 29 Jun 2018 in cs.RO

Abstract: This study introduces a connective model of routing -- local path planning for Autonomous Underwater Vehicle (AUV) time efficient maneuver in long-range operations. Assuming the vehicle operating in a turbulent underwater environment, the local path planner produces the water-current resilient shortest paths along the existent nodes in the global route. A re-routing procedure is defined to re-organize the order of nodes in a route and compensate any lost time during the mission. The Firefly Optimization Algorithm (FOA) is conducted by both of the planners to validate the model's performance in mission timing and its robustness against water current variations. Considering the limitation over the battery life time, the model offers an accurate mission timing and real-time performance. The routing system and the local path planner operate cooperatively, and this is another reason for model's real-time performance. The simulation results confirms the model's capability in fulfillment of the expected criterion and proves its significant robustness against underwater uncertainties and variations of the mission conditions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.